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Abstract: 

The school timetabling problem, although less complicated than its counterpart for the 

university, still provides a ground for interesting and innovative approaches that 

promise solutions of high quality. In this work, a Shift Assignment Problem is solved 

first and work shifts are assigned to teachers. In the sequel, the actual Timetabling 

Problem is solved while the optimal shift assignments that resulted from the previous 

problem help in defining the values for the cost coefficients in the objective function. 

Both problems are modelled using Integer Programming and by this combined 

approach we succeed in modelling all operational and practical rules that the Hellenic 

secondary educational system imposes. The resulting timetables are conflict free, 

complete, fully compact and well balanced for the students. They also handle 

simultaneous, collaborative and parallel teaching as well as blocks of consecutive 

lectures for certain courses. In addition, they are highly compact for the teachers, 

satisfy the teachers´ preferences at a high degree, and assign core courses towards the 

beginning of each day. 
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1.0 Introduction 

School Timetabling as a term refers to the construction of weekly timetables 

for schools of secondary education (Schaerf, 1999). Formally, in this paper it is 

defined as the assignment of triplets consisting of teachers, classes and courses to 

certain time-periods of each day of the week, subject to constraints and in such way 

that a cost function is minimized. For the Hellenic gymnasium (the lower levels of 

secondary education, i.e. high school grades 7 to 9), while the timetabling process was 

carried out in a simpler way a few years back (Birbas et al., 1997a; 1997b; 1999), 

current educational trends require more complicated schedules to cover special needs 

and to provide certain flexibility with the curricula offered to the students. Quality, on 

the other hand, which is an ill-defined feature, is always required from the actual 

timetables. While it is not easy to embody quality into the modelling process, it is 

even more difficult to quantify it. Many of the quality issues, set forth by the 

institutions, are turned into hard requirements and the timetablers have to abide by 

them. The remaining issues are usually declared as “desired” and then it is important 

to tune the solution method so that it approaches as close as possible to solutions of 

“high quality”.  

According to the Hellenic educational system, the students in the gymnasium 

form class-sections and all students of a given class-section follow the same schedule 

for most part of the week. However, for some time periods certain class-sections split 

into smaller ones to attend different courses or merge with others to form new class-

sections just for one or two time periods. These planning techniques are necessary to 

handle elective courses or courses like foreign languages taught at different levels or 

courses that require specially equipped rooms that cannot handle the full number of 

students in a class-section. Although necessary, such scheduling requirements create 

extra difficulties in the timetabling process resulting in timetables that are often quite 

unsatisfactory.  

In order to handle the flexibility introduced in the school curricula, our efforts 

towards automatic timetabling had to evolve also. Compared to our previous approach 

that suggested a single Integer Programming (IP) model (Birbas et al., 1997a; 1997b), 

the new modelling approach involves two stages. The first stage is preliminary and 

assigns work shifts to teachers. In the second stage, the actual timetabling problem is 

solved, while guided but not constrained by the shift assignments. The central idea of 
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the new approach is to create an initial temporal assignment for the teachers based on 

which part of the day they prefer to teach; then the timetabling problem is used to 

specify the exact allocation of courses, teachers and class-sections to time periods and 

days. It is important to note that the timetabling problem is solved as a whole and 

does not break into sub-problems, thus the solution will be optimal. Of course the 

notion of “work shift” does not exist inherently in the school system, as it does in 

organisations like hospitals or other work environments. However, the teaching load 

of a teacher never covers a full day; therefore, it is possible to think of a day’s 

schedule as being split in “flexible” shifts. The first shift always starts right at the first 

time period of a day and the last one always finishes with the last time period. 

Intermediate shifts may also exist but this depends on the number of teachers and their 

weekly teaching load. The length of the daily shifts varies for the different teachers of 

a school and it is formed according to the teaching needs. An additional advantage of 

the shift assignment stage is that teachers that need to teach simultaneously, 

collaboratively or in parallel are assigned from the beginning to the same shift and 

this makes the final schedules more satisfactory. 

For the actual timetabling problem, at the second stage, we concentrate in 

modelling all the requirements that result from school regulations and some well-

accepted quality rules as hard constraints. The rest of the requirements, which refer 

mainly to the precedence of core courses in the daily schedules, the preferences of 

teachers and the compactness of their schedules, are considered as soft (desired) and 

are left for the objective function. Therefore, our two-stage approach devotes quite an 

effort in assigning to the cost coefficients of the objective function those values that 

will assure a closer proximity to the most desired solutions. The result of this process 

is timetables of high quality, meaning that teachers have weekly schedules that are as 

compact as possible, teacher preferences are satisfied as much as possible, and core 

courses are taught early in the day. 

The paper is structured as follows. Section 2 gives a brief literature review on 

the timetabling problem in general and the school timetabling problem in particular. 

Emphasis is given to the Integer Programming approaches. Section 3 gives the details 

of our modelling approach, the definition of the work shift for the educational 

environment and the integer programming models developed for the two stages. The 

case study of a real school is provided in section 4 to demonstrate the usability of our 

approach. Further experimentation with five different schools of varying size is also 
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attempted in order to study the influence of various factors to the quality of the 

resulting timetables. Finally, in section 5, we summarise our approach and provide 

useful conclusions drawn from it. 

2.0 Background and motivation  

“Timetabling represents the most important planning exercise in 

the school calendar.  It  not only  gives  practical  expression  to 

the  curricular philosophy of  the  school,  it  sets,  maintains  

and  regulates  the  teaching and  learning pulse of  the  school  

and ensures the delivery of quality education for all students” 

[Learning and Teaching Scotland, 2006].  

This statement, written by educators, emphasizes the importance of the 

timetabling process for the educational system and highlights the multiple objectives 

of the task. Moreover, it makes clear that while the timetabling practice requires 

adopting all requirements and constraints that hold uniquely for each institution, 

quality is an ill-defined feature that every institution strives to achieve. 

A theoretical version of the school timetabling problem has been formulated 

as a class/teacher mathematical model (de Werra, 1985). In that model, pairs of 

classes and teachers (called lectures) are assigned to time periods to satisfy a 

requirement matrix and in such a way that no two teachers or two classes are involved 

with the same class or teacher, respectively, during the same time period. In such 

form, the problem is always solvable as long as the required teaching load for any 

teacher or class does not exceed the length of the timetable (Even et al., 1976). 

Moreover, in this version or in a couple of its simple variants, the problem is reduced 

to an edge colouring graph problem and can be solved in polynomial time. The 

addition of an objective function that measures the total cost of assignments to an 

originally search problem, provides one way to measure quality (Junginger, 1986). As 

it is argued below, quality is a multi-attribute feature and the total cost of assignments 

in the objective function is usually a weighted average of the important quality 

attributes.  

The school timetabling problem has been formulated in many and very 

different ways and has been solved using several analytical or heuristic approaches: 

Graph colouring (Neufeld and Tartar, 1974; Cangalovic and Schreuder, 1991), 

network flow techniques (Ostermann and de Werra, 1983), genetic algorithms 
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(Colorni et al., 1990; 1998; Drexl and Salewski, 1997), constraint programming 

(Valouxis and Housos, 2003), simulated annealing (Abramson, 1991), column 

generation (Papoutsis, et al., 2003), tiling algorithms (Kingston, 2005) and other local 

search algorithms (Costa, 1994; Schaerf, 1999b). Of course, the timetabling 

requirements for the secondary educational level are very diverse for the different 

countries; therefore, every model has limited use.  

In (Lawrie, 1969) an IP model has been developed to formulate the 

timetabling problem for high schools in UK. The model follows a structure developed 

by the same author uniquely for the UK educational system, where the curriculum of 

pupils is given in terms of layouts. The IP model in this case is solved using the 

Gomory’s method of integer forms, while the objective function does not take into 

account any of the desired quality features. The lack of efficient software tools for the 

solution of IP models a few years back has forced researchers away from suggesting 

standard IP solution techniques. It is more than a decade, however, that this obstacle 

has been removed and mathematical programming tools are contributing towards the 

effort of automating the timetabling process for high schools (Birbas et al., 1997a) 

and for the universities (Tripathy, 1992; Dimopoulou and Miliotis, 2001; Daskalaki et 

al., 2004; Daskalaki and Birbas, 2005; Avella and Vasilev, 2005; Schimmelpfeng and 

Helber, 2007). 

While the school timetabling problem is known to be NP-complete (de Werra, 

1997), enhancing a model with real-world practical or quality features increases even 

more the complexity of the problem. For example, compactness is a type of constraint 

that is usually required in school timetabling for the students but not necessarily for 

the teachers. The former is specifically modelled as a hard constraint in several 

models presented in the literature (Drexl and Salewski, 1997; Birbas et al., 1997a, 

1997b, and 1999; Schaerf, 1999b; Valouxis and Housos, 2003; Papoutsis et al., 2003). 

Theoretically, deciding whether a timetable that guarantees compactness for the 

students exists is NP-complete by itself (Asratian and de Werra, 2002). However, in 

most practical situations, the total number of time periods scheduled for each class is 

much larger than the total number of time periods scheduled for each teacher; 

therefore, it is almost certain that there are plenty of feasible solutions that satisfy the 

student compactness requirement. In contrast, compactness for teachers is not usually 

required but in several cases it is strongly preferred and recognized as a quality 

feature (Valouxis and Housos, 2003; Papoutsis et al., 2003). In fact, the two 
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compactness requirements may be conflicting to each other. Therefore, it is important 

to search for compact timetables for teachers only after compactness for students has 

been fully satisfied. While it is easier to achieve both in situations like the typical 

“class-teacher problem”, things become worse when additional realistic requirements 

are added. Additional sources of complexity include special scheduling requirements 

like the simultaneous or collaborative teaching and parallel courses. In such cases, it 

is almost impossible to find fully compact schedules for teachers and the quality of 

the resulting timetables degrades (Asratian and de Werra, 2002; de Werra et al., 

2002).  

An additional source of complexity in timetabling problems results from 

requirements for consecutive time periods. Such a constraint, which is very realistic, 

by itself, turns timetabling problems from polynomially solvable to NP-hard (ten 

Eikelder and Willemen, 2001). Especially in university timetabling, where a great 

percentage of the courses require blocks of lectures with two, three or even more 

consecutive time periods, it is quite beneficial to relax this constraint first and try to 

patch the solution afterwards in some way (Daskalaki and Birbas, 2005). This 

approach improves tremendously the required CPU time and it is therefore 

recommended for university environments. However, in school timetabling the 

consecutive time periods represent just a small percentage of the courses, thus causing 

no major problem. For the school timetabling problem it is essential to achieve 

compact schedules for the teachers along with other quality features, thus our 

approach gives primary importance to this issue. 

Beyond school timetabling, the literature in the general area of timetabling and 

rostering appears quite rich (Burke and Rudova, 2007; Burke and Trick, 2005; Burke 

and Gausmaecker, 2003; Burke and Erben, 2001; Burke and Carter, 1998; Burke and 

Ross, 1996). The University or Course Timetabling Problem (Carter and Laporte, 

1998; Burke and Petrovic, 2002; Petrovic and Burke, 2004) and the Exam 

Timetabling Problem (Carter and Laporte, 1996; Carter et al., 1996) represent the 

most closely related subjects and share similar solution approaches; however, they 

carry significant differences and therefore are treated separately by the researchers. 

Apart from mathematical programming, mentioned earlier, representative solution 

approaches to these problems also include graph colouring and its variants (Burke et 

al., 2003b), tabu search and hyper-heuristics (Hertz, 1992; Burke et al., 2003a), 
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constraint-based techniques (Deris et al., 1997) and case-based reasoning (Burke et 

al., 2003c; Burke et al., 2006).  

3.0 Modelling approach and problem formulation 

The following basic assumptions are set forth to describe the framework for 

our models. 

1) The school works for I days every week (Monday through Friday) and for J time 

periods every day of the week.  

2) The school comprises a number of classes, which break into K class-sections, in 

total, {A1, A2 … B1, B2… C1, C2 …}. 

3) There are L teachers available for teaching. Most of them work full time, but there 

is always a percentage of part timers. The actual teaching load of a teacher 

depends on his/her seniority and the needs for courses within his/her specialty. 

4) Every class-section k requires a timetable that includes all courses designed for it.  

5) All students of a given class-section attend the same courses during most of the 

time periods. For a small number of time periods, however, some class-sections 

split into smaller sections or reshuffle for attending certain “special” courses.  

6) Most courses require sessions of at most one time period per day, however, certain 

courses may require blocks of more than one consecutive time periods. 

7) Classrooms are assumed pre-assigned to class-sections. With the exception of 

certain lab work and a small number of “special” courses, the students attend 

courses in their dedicated classroom.  

Assumption (5) refers to courses that require special care for their scheduling. 

In this model we handle the following cases:  

- Simultaneous teaching of different courses from two teachers to two different 

groups of students. Depending on the school, offered courses like Computers or 

Physics or Technology may require lab work. If the lab room cannot fit all 

students of a section, then two sub-sections are formed. One sub-section attends 

the underlined course (m1), taught by teacher l
*
, while the other sub-section 

attends another course (m2) with similar requirements (Fig. 1a). According to our 

modelling approach, for every such pair of teachers one is considered to be the 

basic and the other the non-basic. For this specific assignment the non-basic 

teacher follows the schedule of the basic.  
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- Collaborative teaching of the same course by two teachers and for the same group 

of students. Again for courses that require lab work, if the lab room can fit all 

students of the section, it is not uncommon to assign more than one teacher to be 

present in the room (Fig. 1b). Like in simultaneous teaching, for every pair of 

teachers that are assigned concurrently to the same section, one is considered to be 

the basic and the other the non-basic. 

- Parallelism of courses. Courses on foreign languages often are designed for at 

least two levels (beginners / advanced). Assuming that there is only one English 

teacher, then students from two different class-sections are joined together to form 

a new section just for one time period and attend the beginners level course. The 

rest of the students from both class-sections form another section and attend a 

different course, for example Physical Education (Fig. 1c). Afterwards, all 

students return back to their original class-section to continue with their regular 

schedule. The difference of this scenario from the previous ones is the reshuffling 

of two class-sections. Still, one of the teachers will be named as the basic one and 

the other the non-basic. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Courses that require special treatment in scheduling 

A look in the timetabling literature reveals that in many school systems there 

are requirements for parallel courses and for simultaneous or collaborative teaching 
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(b) Collaborative teaching of the same course m1 from two teachers (l* and l) to a given class-section. 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Parallel teaching of two different courses (m1 and m2) from two teachers (l
*
 and l) to two newly 

formed class-sections. 
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(de Gans, 1981; Schaerf, 1999b); therefore, such features are very important for the 

timetabling models, even though they do add significant complication to the models.  

As explained earlier our proposed solution consists of two stages. In the first 

stage, the Shift Assignment Problem (SAP) is solved, using an IP model. The SAP 

takes as input the teachers´ preferences for a specific part of each day (declared as 

early, middle or late shift), the requirements of the school for simultaneous or 

collaborative teaching or parallel courses and the school policy for core courses. In 

the second stage, the actual Timetabling Problem (TP) is solved using a different IP 

model, while the values of the cost coefficients in the objective function are 

determined with the help of the output from the previous stage.  

The objective of the SAP is the assignment of teachers to a minimal number of 

work shifts during each day of the week, so that the weekly schedule of the whole 

school is feasible. It takes into account the fact that teachers never have a full-day 

teaching assignment and that they prefer compact, instead of sparse, daily schedules. 

The assignment of teachers to work shifts obeys the following rules: 

- Every teacher is assigned to exactly one work shift for each day of presence in the 

school. 

- Depending on his/her specialty, each teacher teaches either mostly core courses or 

mostly non-core courses. The first group of teachers should be assigned preferably 

to early work-shifts, while the second group should rather be assigned to later 

ones. If a teacher teaches both core and non-core courses, then this affects the 

order of the course assignments within a given work shift. 

- When it is required from the school, two or sometimes even three specific teachers 

may have to be assigned to the same work shift, so simultaneous, collaborative or 

parallel teaching can be possible. 

- During any time period and as a result during any work shift there should be at 

least so many teachers present as there are class-sections in the school.  

On the contrary, the TP takes care of all scheduling rules and regulations of 

the educational system, which are modelled as constraints of the IP model. More 

specifically, the model provides timetables that carry the following characteristics: 

- They assign at most one course to each teacher for every time period.  

- They are compact for the students, i.e. there are no empty slots in the student 

schedules. 
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- They are complete in the sense that they cover all courses required by the student 

curriculum and for the required amount of time periods per course. 

- The timetable of each class-section is balanced, in the sense of “time spent at 

school” throughout the week. 

- All full time teachers are assigned teaching assignments for each day of the week, 

in order to guarantee daily presence. Part time teachers, respectively, are assigned 

teaching load only for those days that are available to the particular school. 

- All courses are scheduled for at most one time period per day, with the exception 

of those courses that specifically require consecutive time periods. 

- Courses that require consecutive time periods are scheduled for at most one multi-

period session per day and fully cover their weekly requirements. 

- Occasionally certain courses require to be scheduled simultaneously and more 

than one teacher should be scheduled for the same course. 

Apart from the hard constraints that the models handle, the following soft 

quality requirements are also considered:  

 Core courses should be scheduled early in the day 

 Teacher preferences should be satisfied as much as possible 

 Teacher schedules should be as compact as possible 

In order to create a timetable for a school, the two models are solved 

sequentially. Starting from the SAP and the optimal work shifts assignments for each 

teacher during the week, it is then easier to find an optimal solution for the TP that 

distributes the courses taught by the given teacher to time periods within the shifts 

that the specific teacher is assigned to be present. For the solution of the IP models in 

both stages the ILOG CPLEX MIP Solver has been used. 

Table 1. Definition of parameters 

Acronym Name Description 

TTP Total Time Periods The total number of time periods to be scheduled 

in the timetable 

WTLl Weekly Teaching Load for teacher l The total  number of time periods to be assigned to 

teacher l each week 

lDTL  
Average Daily Teaching Load for 

teacher l 

The daily average number of time  periods 

assigned to teacher l  

WTLkl Weekly Teaching Load of teacher l 

for class-section k 

The total number of time periods to be assigned to 

teacher l for class-section k each week 

WTLklm Weekly Teaching Load of teacher l 
for class-section k and course m  

The total number of time periods to be assigned to 
teacher l for course m each week 

TTPk Total Time Periods for section k The total number of time periods over all courses 

of class-section k to be assigned each week 
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Prior to any model presentation, Table 1 depicts the acronyms, names and 

descriptions of certain parameters that are used further down. 

It is clear that the following feasibility conditions should hold:  

(1) 
1 1

L K

l k

l k

TTP WTL TTP
 

    

(2) 
1 1 1

K K M

l kl klm

k k m

WTL WTL WTL
  

    

(3) 
1 1 1

L L M

k kl klm

l l m

TTP WTL WTL
  

    

(4) 
1

M

kl klm

m

WTL WTL


  

The feasibility conditions (1) – (4) hold exactly as they appear above only for those 

schools that carry no special requirements for the scheduling of their courses. When 

requests for simultaneous, collaborative or parallel scheduling are present, one should 

consider only the basic teachers for each such assignment. 

3.1 Definition of work shifts for teachers  

 The notion of work shifts in this problem is somewhat different than the shifts 

as being used in other work environments, for example hospitals or supermarkets. The 

main disparity is the flexibility that should be maintained for the starting and/or 

ending time of each work shift that is assigned to an individual. Let us assume for a 

while that there are no courses with special scheduling requirements. Then the 

following proposition must hold for every feasible solution:  

Proposition 1. At any time period of a given day, there must be at least as many 

teachers present in the school as the number of class-sections. 

The proposition must be true; otherwise, at least one class-section would not 

be assigned a course during the specified time period, a situation that violates the 

requirement for compact student schedules.  

 In order to generate work shifts for the teachers of a school, the concept of the 

“equivalent-of-a-teacher” (EOT) is introduced. During any day of the week the 

teaching load of a teacher is always less and sometimes much less than J, the number 

of time periods of a day, because  

1 ,   lDTL J l  . 
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As a result, if we allow the courses that the given teacher teaches to be 

scheduled on any time period of the day, the introduction of empty slots in his/her 

timetable is unavoidable. The number of empty slots in the teachers’ schedules can be 

minimal if we consider an “ideal” operation of the school, as follows: On the first 

period of the day, there are exactly so many teachers present as the number of class-

sections. The teachers proceed with their individual teaching schedules, with no idle 

period in-between, until one or more of them finish for the day. For every teacher that 

completes his/her teaching activities, another one starts until someone else takes over 

or until the day finishes. The changeover between two teachers may occur after any 

period of the day. The subset of teachers that work in a sequential manner for a day 

will be called the “equivalent-of-a-teacher” (EOT). We can further think of the notion 

of the “virtual class-section” for the school, so that an EOT is assigned to one and 

only one virtual class-section for the whole day. Then a similar proposition, like the 

one before, holds for the EOTs and the virtual class-sections:  

Proposition 2. On a given day in a school there should be exactly as many EOTs as 

the number of virtual class-sections. 

This proposition must also be true for the compactness criterion to be satisfied. 

In this sense, the timetabling turns into an assignment problem.  

Tables 2, 3 and 4 demonstrate further the aforementioned idea. Table 2 

presents a possible one-day schedule with seven time periods for a school that 

consists of four sections and eight teachers. Teachers 1 and 4 form an EOT by sharing 

the teaching load for virtual section #1, i.e. the virtual section #1 is assigned to the 

subset of teachers {1, 4}. Likewise, the subsets of teachers {3, 8}, {6, 2} and {7, 5} 

form three more EOTs, which are assigned to virtual sections #2, #3, and #4, 

respectively. In reality, each teacher switches from one real class-section to another, 

so the right part of Table 2 illustrates a possible assignment of the eight teachers to the 

actual class-sections of the school (let’s say A1, A2, B1, and C1). Since the sections 

are four and the teachers eight (a multiple of four), for every EOT the working day is 

split in two shifts of different lengths. The work shifts for a school cannot be rigid in 

nature, but flexible enough to absorb peculiarities of the educational system. 
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Table 2. A typical day schedule for a school with 8 teachers and 4 sections. 

 P1 P2 P3 P4 P5 P6 P7  P1 P2 P3 P4 P5 P6 P7 

Teach1 v_section 1   A1 B1 C1 A2    

Teach2  v_section 3     C1 A2 A1 B1 

Teach3 v_section 2   B1 C1      

Teach4  v_section 1      B1 C1 A2 

Teach5  v_section 4      C1 A2 A1 

Teach6 v_section 3   C1 A2 B1     

Teach7 v_section 4   A2 A1 A1 B1    

Teach8  v_section 2    A2 A1 A1 B1 C1 

Table 3. A typical day schedule for a school with 9 teachers and 4 sections.  

 P1 P2 P3 P4 P5 P6 P7  P1 P2 P3 P4 P5 P6 P7 

Teach1 V_section 1   A1 B1 C1 A2    

Teach2  v_section 3     C1 A2 A1 B1 

Teach3  v_section 2   B1 C1      

Teach4  v_section 1      B1 C1 A2 

Teach5  v_section 4      C1 A2 A1 

Teach6 v_section 3   C1 A2 B1     

Teach7 V_section 4   A2 A1 A1 B1    

Teach8  v_section 2     A2 A1 A1   

Teach9  v_section 2       B1 C1 

Table 4. A typical day schedule for a school with 7 teachers and 4 sections.  

 P1 P2 P3 P4 P5 P6 P7  P1 P2 P3 P4 P5 P6 P7 

Teach1 v_section 1   A1 B1 C1 A2 A1   

Teach2  v_section 2     C1 A2 A1 B1 

Teach3 v_section 2   B1 C1 A1     

Teach4  v_section 3      B1 C1 A2 

Teach5  v_section 4     B1 C1 A2 A1 

Teach6 v_section 3   C1 A2 B1 A1    

Teach7 v_section 4    v_sect 1  A2 A1 A2   B1 C1 
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Similarly, Table 3 exposes an assignment of shifts for a school with four class-

sections and nine teachers. In this example, the subsets of the teachers {1, 4}, {3, 8, 9}, 

{6, 2} and {7, 5} form the EOTs. It is noted that since [9 / 4] 2  and 9mod4 1 , three 

EOTs are composed of two teachers and exactly one of three. Therefore, the maximum 

number for the work shifts is three, however only one teacher is assigned to the third 

shift. For the examples of Tables 2 and 3, if course requirements for the teachers and 

classes permit, the teachers may not have idle periods in their schedule. 

The last example (Table 4) refers to a school with seven teachers and four class-

sections. This time [7 / 4] 1  and 7mod4 3 ; therefore, one teacher must carry a full-

day assignment and the others will form pairs to share the day. However, if there are 

not enough courses for a single teacher to fill a work shift of seven time periods his/her 

schedule inherently holds idle time periods. According to this example the four EOTs 

are {1, 7}, {3, 2}, {6, 4} and {7, 5}, i.e. teacher #7 participates in two EOTs and in 

some respect it looks as if he/she is assigned two shifts. 

The number and length of work shifts in any given school depends on the 

number of teachers and their availability for teaching (part-time/full-time), the number 

of class-sections and the number of courses. The notion of work-shifts lies in the heart 

of the model to be presented in the next section. As suggested by the three examples, 

for fully compact teacher schedules every teacher should be assigned to only one shift. 

However, additional constraints and planning of the actual courses required by the 

educational system often violates this desirable feature. Our approach aims at keeping 

the number of violations at a minimum level. 

3.2 Modelling the Shift Assignment Problem (SAP) 

Two sets of binary variables, one with basic and the other with auxiliary 

variables are used for modelling the SAP. Variable , ,i l bx  takes the value of 1, when 

teacher l is scheduled to work during shift b of day i. Auxiliary variables are 

introduced only when there is a need for forcing one teacher to be in the same shift with 

another teacher to serve in parallel sessions. Therefore, the variable 
1 2, , ,i l l by  takes the 

value of 1 when teachers l1 and l2 are both assigned to shift b of day i.  

3.2.1 Constraints for the SAP 

 Five sets of constraints are set forth for this model.  
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α) Uniqueness 

Every teacher of the school should be assigned to exactly one shift for each day:  

, , 1i l b

b

x





,  i ,  li                                                (3.1) 

where i ={ l:  l is a teacher available to the school on day i}.  

The constraints ensure daily presence of every teacher for all days for which he/she is 

scheduled to be in that school. 

b) School policy for the shift assignments 

The weekly assignments of a given teacher to a specific shift (e.g. morning shift, middle 

shift, etc.) cannot exceed a pre-defined upper limit:  

, ,i l b lb

i

x r





,    l,  b                (3.2) 

where rlb is the maximum number of shifts b allowed per week for teacher l. This limit 

reflects the policy of each school and may depend on the teacher’s specialty. 

c) Pre-assignment of shifts 

Under certain circumstances a teacher may be allowed the pre-assignment of a shift: 

, , 1i l bx  ,                    (i, l, b) fix                (3.3) 

where fix ={(i, l, b):  teacher l shall be assigned to shift b of day i}. 

d) Conjugation of shifts 

(i) Teachers l1 and l2 shall be assigned to the same shifts because their teaching 

assignments comprise courses that shall be taught in parallel. This rule is necessary 

when there is a need for simultaneous teaching, collaborative teaching or parallel 

teaching. The constraints needed in this case are: 

1 2, , , , 0i l b i l bx x  ,       i, b, (l1,l2)V1  V2   
1 2l lq q          (3.4a)  

where  

V1 ={(l1,l2) : l1 and l2 are teachers that need to teach simultaneously to different sub-

sections or collaboratively to the same section},  

V2 ={(l1,l2) : l1 and l2 are teachers teaching in parallel to two different class sections} 

and  
il
q indicate the weekly time-period requirement for the course that the teacher li    

(i = 1, 2) teaches and requires conjugation of shifts.  
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Constraints (3.4a) safeguard the assignment of teachers l1 and l2 to the same shift on a 

given day. 

1 2 1 2, , , , , , , 0i l b i l b i l l bx x y   ,       i,  b,   (l1,l2)V1
1 2l lq q        (3.4b) 

Constraints (3.4b) are implemented only in the case of simultaneous or collaborative 

teaching for linking the auxiliary variables
1 2, , ,i l l by  with , ,i l bx . 

1 2 1, , ,i l l b l

i b

y q
 


 

                               (l1,l2)V1
1 2l lq q                            (3.4c) 

Lastly, constraints (3.4c) ensure that exactly 
1
 lq shifts are allocated to teacher l1, who is 

the teacher of the course with the smallest requirement in terms of time periods per 

week. 

(ii) Teachers l1 and l2 shall be assigned to the same shifts because their teaching 

assignments comprise courses that shall be taught in parallel; however, teacher l3 also 

requires simultaneous teaching with l1 during some other periods. In this case, the 

teachers l2 and l3 are assigned to consecutive shifts: 

1 3, , , ,

1 1

0i l b i l b

b b b b

x x
    

  ,   i,  b,   (l1;l2, l3)  V3                        (3.4d) 

 

where  

V3 ={(l1;l2, l3): l1 is required to teach some course at the same time with teacher l2 and 

another course at the same time with teacher l3}  

Constraints (3.4d) allow the simultaneous teaching of teachers l1 and l2 for certain time 

periods and afterwards the simultaneous teaching of teachers l1 and l3. 

e) Completeness 

During any shift of the day, the number of teachers required to be present shall be 

equal to the number of class-sections of the school. For the cases of collaborative 

teaching for a given course, this number changes, necessitating the following 

constraints: 

For all work-shifts of any given day, except of the last one, the following constraints 

are set forth: 

1 2

1 2 1

, , , , ,

( , )

i l b i l l b

l l l V

x y K
 

  


,             i,  and  b = 1,…,B1                             (3.5a) 

where K is the number of the class-sections and Β is the number of the daily shifts. 

For the last shift B, however, only the remaining teachers may be assigned: 
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1 2

1 2

, , , , ,

( , ) { }1

i l B i l l b

l l l V b B

x y 
   

   
 

,              i                                         (3.5b)  

where υ is defined as modL K  and the number of shifts is defined as the ceiling of L/K, 

i.e. 
L

B
K
 

  
 

. 

3.2.2 Objective function 

 The objective function for this problem is a linear cost function:  

, , , ,  Minimise i l b i l b

i I l L b B

c x
  

   (3.6) 

 The coefficients , ,i l bc  are defined in a way that reflects the teachers’ preferences 

for specific shifts for all days. The lower the value for , ,i l bc , the higher the preference 

for shift b. An example of such a value system appears in Table 5. A high value for a 

particular cost coefficient prevents, but does not prohibit the assignment of its 

corresponding variable to the final solution.  

Table 5. Possible values for the cost coefficients , ,i l bc  

Rank of preference Cost of Preference 

First preference 50 

Second preference 120 

Third preference  200 

 

3.3 Modelling the Timetabling Problem  

  The timetabling problem, as it is modelled in this section, takes responsibility 

for the assignment of subjects, teachers and class sections to the time periods of a week, 

taking into account all functional rules imposed by a given school system, typical for 

the Hellenic educational system and many other countries. Furthermore, the solution of 

the SAP guides the process of assigning values to the cost coefficients in the objective 

function based on the shifts that each teacher is assigned for each day of the week.  

Two sets of binary variables are again employed. The first consists of the basic 

variables denoted by , , , ,i j k l mx , where , ,i j   , , and k l m     . , , , ,i j k l mx  is 

assigned the value of 1, when course m, taught by teacher l to the class-section k, is 

scheduled for the jth period of day i. The second set consists of the auxiliary 

variables , , , ,m mi t k h my , used only for those courses, which require sessions of consecutive 

periods. , , , ,m mi t k h my  takes the value of 1, when course m, is scheduled for hm consecutive 
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periods on day i for class-section k, with tm being the 1
st
 period for this assignment. The 

IP model embodies as constraints all standard scheduling rules for the timetabling 

process and many non-standard ones imposed from regulations of the educational 

system we have studied. 

3.3.1. Constraints 

 The constraints are presented in three different groups. The first group are the 

standard constraints, named as such because they take care of rules that play a 

fundamental role in all timetabling problems and appear in nearly all formulations. The 

second group consists of several non-standard constraints in the sense that many of 

these constraints appear in timetabling problems, however not all schools operate under 

these rules. The third group refers to the special scheduling requirements that certain 

courses may require. Requirements like “consecutive teaching periods” result from the 

nature of certain courses, while others result from an effort for the educational system 

to be more flexible and adaptable to students’ needs. 

Throughout the presentation of the constraints, a number of sets – usually 

subsets of the main sets – are utilized in order to limit down the number of equations 

and the number of variables in the model. These sets are defined as follows: 

kl ={m: m is a course that teacher l teaches for class-section k} 

*

kl ={m: m is any regular course that teacher l teaches for class-section k}, 

where the term “regular” refers to all courses that do not require any special type of 

scheduling. 

sim

l = {(m, k, l
*
): m is a course that teacher l  teaches for a part of section 

k  simultaneously with another course taught by the “basic” teacher l
*
} 

col

l  = {(m, k, l
*
): m is a course that teacher l  teaches for section k  in 

collaboration with the “basic” teacher l
*
} 

cons = {(m, k, hm): m is a course of section k  that needs to be scheduled in 

block(s) of hm consecutive periods} 

paral = {[(ma, mb); (ka, kb); (la, lb)]: am  is a course that teacher la teaches for 

section ka that needs to be scheduled always in parallel to mb a course taught by 

teacher lb for section kb } 
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excl = {[(ma, ka, la; mb, kb, lb; ...;mw, kw, lw) (la)]: , ,...,a b wm m m  are courses that 

teachers , ,...,a b wl l l   teach to sections , ,...,a b wk k k  , respectively, however 

no more than a certain number of them may be scheduled in the same day or 

time period} 

fix = {(ia, ja, ma, ka, la): am  is a course that teacher la teaches to section ka and 

should be scheduled on day ia and in period ja} 

l = { i : i is any day of the week for which teacher l is available for the school}  

l = { k : k is a class-section of the school to which teacher l teaches at least one 

course}  

In addition, we define the maximum stretch, a parameter that is used in the model: 

Definition: Maximum Stretch for class-section k, denoted by max

kS , is the maximum 

number of teaching periods that section k may have during any day of the week.  

max

kS  may be set equal to J, the length of each day, however, in order to create 

more balanced timetables for the classes, it is preferable to set a different upper limit 

for each section of the school. Therefore, max

kS  equals to kTTP

I

 
 
 

. In general, however, 

it holds that max ,kS J k   . 

A. Standard Constraints 

The constraints of this group make sure that the resulting timetables are conflict-free 

and contain all courses required for scheduling.  

A1. Uniqueness 

Every teacher may be assigned at most one course and one class-section in a given 

period with the exception of indicated courses that require more than one instructor. 

*

* *

, , , , , , , ,
( , , )

1, , ,
sim col

l kl l l

i j k l m li j k l m
k m m k l

x x l j i
   

         
   

      

          (3.7) 

A2. Completeness for students 

All courses in the curriculum of a class-section should appear in the timetable for the 

required number of teaching periods. 
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*

*

, , , , , , , ,
( , , )

,
sim col

k kl l k ll l

i j k l m ki j k l m
l m i j J l i I j Jm k l

x x TTP k
       

        
     



                    (3.8) 

A3. Completeness for teachers 

All courses assigned to a given teacher should appear in the timetable for the required 

number of teaching periods. 

*

* *

, , , , , , , ,
( , , )

, ,
sim col

lkl l l

i j k l m kli j k l m
i j i jm m k l

x WTL k lx
     

        
     

 

                    (3.9) 

A4. Completeness for courses 

The teaching periods assigned to a given course over a whole week should add up to 

the weekly requirements for the specific course.  

, , , ,

l

i j k l m klm

i j

WTLx
 


 

 k,   lk, m
kl

 ,                               (3.10)   

In a given model, not all of the completeness constraints are needed. The feasibility 

conditions in the beginning of section 3.0 may guarantee that only the last (Eq. 3.10) is 

sufficient to satisfy all others. 

B. Non-Standard (Operational) Constraints. 

In this group of constraints several rules that quite often are requested from the 

educational systems are presented. 

B1. Compactness for students 

The timetable of every class-section should not carry empty slots during the week 

*

, , , ,

k kl

i j k l m

l m

x
 

 
 

+ *

*
, , , ,

( , , ) sim col
l l

i j k l m
m k l

x
 


 

= 1,     k , i,  j=1, ..., ( max

kS 1)  

        (3.11a) 

max

*
, , , ,k

k kl

i S k l m
l m

x
 

 
 

 + max *

*
, , , ,

( , , )
k

sim col
l l

i S k l m
m k l

x
 


 

 1,   i,  k       (3.11b)   

*

, , , ,

k kl

i j k l m

l jm

x
 

  
 

 + *

*
, , , ,

( , , ) sim col
l l

i j k l m
jm k l

x
 

 
 


max

kS , i, k  (3.12) 

Constraints (3.11) ensure that for each section there is exactly one course scheduled for 

any given period (except may be the last one) of any day. Constraints (3.12), on the 

other hand, checks whether all courses of section k are scheduled within the maximum 

stretch allowed for the section. The requirement for compact student schedules appears 
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in many school timetabling problems and this is a major difference between university 

and school timetabling practice. 

B2. Daily presence of teachers 

Many schools require daily presence from the full-time teaching staff in the school, 

with the exception of the part-time staff that declare ahead of time the days of 

availability. Therefore, every teacher should be assigned at least one teaching period of 

each day that is available to the specific school.  

*

, , , ,

l kl

i j k l m

j k m

x
  

 
  

+ *

*
, , , ,

( , , ) sim col
l l

i j k l m
jm k l

x
 

 
 

 1,    l ,   il,    (3.13) 

Not all schools carry such a requirement. Instead, some schools allow for one day-off in 

the week or they carry some different policy for presence in the school.  

 B3. Uniform distribution of courses 

Any given course may be scheduled for at most one teaching period per day of the 

week, unless it requires more teaching periods than the days of the week or there is a 

special request for multiple or consecutive hours, in which cases they are scheduled 

accordingly.  

, , , ,i j k l m
j
x






    1,        i ,  k,  lk,  m kl                                      (3.14)  

C. Special Requirements 

This last group of constraints are provided to handle special requirements that 

sometimes appear in connection with certain courses. These requirements increase the 

complexity of the problem. In our case, it does increase significantly the number of 

equations and the number of variables. However, we have applied this IP modelling for 

many schools in our country of quite varying sizes and still the problem was solvable. 

C1. Consecutiveness of teaching periods 

The school timetabling process should accommodate special requirements for certain 

courses to be taught in multi-period slots at most once a day for a given class section. 

 Let m be a course that requires a session of hm consecutive periods and l the 

teacher that teaches the course for section k. Then the following should apply: 

hm* , , , ,m mi t k h my 
1

, , , ,

m m

m

t h

i j k l m

j t

x
 



  , , , ,m mi t k h my +hm 1,  (m,k,hm)Mcon,il , tm Jhm+1

                  (3.15a) 
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1

, , , ,

1

m

m m

m

J h

i t k h m

t

y
 



  1 ,                       (m, k, hm)con , i l                                  (3.15b) 

1

, , , ,

1

m

m m

l m

J h

i t k h m

i I t

y
 

 

   =  νm ,               (m, k, hm)con                                 (3.16) 

where νm is the number of the multi-period slots required for course m every week. 

 Constraints 3.15a force hm basic variables , , , ,i j k l mx  that refer to consecutive time 

periods to take the value of 1, while constraints 3.15b ensure that only one block of 

consecutive periods may be assigned in any given day. Finally, constraint 3.16 indicates 

that there should be exactly νm of these blocks for the whole week. 

C2. Parallelism of courses 

As explained in the Introduction, this constraint is activated when the students 

of two different sections (k1 and k2) are re-arranged in order to form two new sections 

that attend two different courses (m1 and m2) assigned to teachers l1 and l2, respectively. 

So, it is only needed to schedule the two courses m1 and m2 for the same time periods. 

1 1 1 2 2 2, , , , , , , ,i j k l m i j k l mx x   0,   [(m1, m2); (k1, k2); (l1, l2)] par ,  i,, j     (3.17)  

C3. Mutual exclusiveness of courses 

 Sometimes it is desirable for two or more courses to be scheduled at different 

time periods or days or more generally only up to nr of them to be scheduled at the 

same time. In this case the following constraints are appropriate.  

, , , ,

( , , ) excl

i j k l m r

m k l

x n





,        i, j                                                                  (3.18)  

Given there is no index for the classrooms in the decision variables, these constraints 

are important in order to avoid clashes for the laboratories or specially equipped rooms. 

C4. Pre-assignment of certain courses 

 Lastly, pre-assignments of certain courses to specific time periods are easily 

handled by the following constraints. 

i, j,k,l,mx  = 1,               (i, j, k, l, m)  fix                                                             (3.19) 

3.3.2 Objective function  

 

The objective function for the timetabling problem is a cost function, with two 

distinct terms. The cost coefficients , , , ,i j k l mc  represent the cost of assigning course m 
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taught by teacher l for section k to period j of day i. Similarly, the cost coefficients 

, , , ,m mi t k h ma  refer to the cost of scheduling course m for section k on day i and for the 

periods tm up to tm+hm1, given that course m requires hm consecutive time periods. 

Therefore, the objective of the IP model is to minimize the function: 

, , , , , , , , , , , , , , , ,

( , , )
m m m m

l kl m cons m tm

i j k l m i j k l m i t k h m i t k h m

i j l k m i m k h t

yc x a
       

    
       

        (3.20) 

where 
mt
P = { tm : tm is a possible value for the 1

st
 time period of the hm consecutive 

time periods for course m  cons}   
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Figure 2. Penalty functions for assigning values to cost coefficients in a 2-shift problem  

 

 The cost coefficients , , , ,i j k l mc  take values with the help of the output from the SAP 

and certain penalty functions like the ones shown in Figs. 2 and 3. Fig. 2 shows an 

example of such penalty functions for a school that operates with two shifts per day. 

For a given day and for a core course, if the teacher is assigned to the first shift (by the 

SAP) then the corresponding cost coefficient (in the TP) will be assigned the values 

indicated by the solid line in Fig. 2a for the different time-periods of the day. Since it is 

preferable for the core courses to be scheduled as early as possible during the day, we 

provide low values for the first three periods, medium values for the fourth period and 

high or very high (not shown in the figure) for the rest of the day. If the solution from 

the SAP assigns the teacher to the second shift, then the corresponding cost coefficients 

may take the values of the solid line in Fig. 2b. For the second shift, the fifth and fourth 

periods are preferable for the core courses and are assigned the lowest values, while the 
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sixth and seventh are in the medium-low range. The rest of the periods are assigned 

very high values (not shown) in order to avert assignments of core courses to these 

periods. On the contrary, for a non-core course, if the teacher is assigned to the first or 

the second shift then the corresponding cost coefficients may be assigned the values 

indicated by the dotted lines in Figs. 2a and 2b, respectively. 
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Figure 3. Penalty functions for assigning values to cost coefficients in a 3-shift problem 

 

Similarly, Fig. 3 depicts a similar set of penalty functions that could be used for 

assigning values to the cost coefficients of the TP objective function when a school 

operates with three shifts for the teaching staff. The rationale behind these functions is 

similar to those in Fig. 2. Finally, Fig. 4 displays an example penalty function that 

could be used for assigning values to the , , , ,m mi t k h ma  cost coefficients of the TP objective 
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function for a course that requires two consecutive time periods for its teaching. The 

chart suggests that it is most preferable for this course to start either on the second time 

period, otherwise on the third or fifth period. It is quite clear that all penalty functions 

may take different shapes and each school may introduce its own policy for the desired 

assignments. 
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Figure 4. Penalty function for assigning values to cost coefficients for courses that require two 

consecutive time periods  

 

4.0 Experimental Results 

In order to demonstrate the effectiveness of the modelling approach just 

presented, the results of a case study are shown in this section. The study concerns an 

existing secondary school with six class-sections, two sections for each class, i.e. {A1, 

A2, B1, B2, C1, and C2}. Twenty-three teachers are serving in the school, sixteen full-

time and seven part-time. For the timetable of this school, 95 courses ought to be 

assigned to 5 days of the week, with 7 periods per day. The problem has been solved 

using the approach presented in section 3 and the results are presented below. The 

solution from the SAP indicated the work shifts, where each teacher should be assigned 

for each day of the week, based on individual preferences, the needs of the school and 

the policy about core and non-core courses. Then, using the penalty functions of Fig. 3, 

the values for the coefficients in the objective function of the TP were assigned and the 

problem was solved. For both problems, the MIP solver of ILOG CPLEX 10.1 has been 

used.  

 



 26 

Table 6.  The teachers’ timetable for the case study problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to Table 6, which depicts the teachers’ view of the timetable, the 

daily load of each teacher is quite compact. For example, teacher T1 is assigned to 

teach for three successive periods on the first shift of Monday. Similarly, on Tuesday 

DAYS MONDAY TUESDAY WEDNESDAY 

TEACHERS 1
η
 2

η
 3

η
 4

η
 5

η
 6

η
 7

η
 1

η
 2

η
 3

η
 4

η
 5

η
 6

η
 7

η
 1

η
 2

η
 3

η
 4

η
 5

η
 6

η
 7

η
 

T1 Β2 Α1 Α2          C1 C2     Β2 Α2  

T2 C1 C1        C1 C2        C1 C1 C2 
T3      Α1    Β2 Α2 Β2     Β2 Β2    
T4   Α1 C2 C1       C2 Α1 C1    Α1    
T5 Α1 C2      C2 C1      C2 Α1      
T6     Α2  Β1 Α2 Β2 Α2       Α2 Α2 Β1   
T7   Β1 Β1        Β1 C2  Β1 Β1      
T8 Α2 Β1 C1     C1 Α2      C1 Α2 Β1     
T9     Α1 C2 Β2  C2 Α1 Β2      Α1 C2    
T10 *** *** *** ***

* 

***

* 

***

* 

***

* 

     Α2 Α2 *** *** *** *** *** *** *** 
T11 C2 Β2        Β1 C1    Β2 C1      
T12   Β2 C1      C2 Β1        C2 Α1 C1 
T13   (French)    Α1 Β2 Α2  Β1 Α1      Α2 Β2      
T14   (French)      C1 C2 ***

* 

***

* 

***

* 

*** **** ***

* 

***   C2 C1    
T15  (German)     Β2 Α2 C2 ***

* 

***

* 

***

* 

*** **** *** ** Α2 Β2 C2     
T16  (Computers) Β1 Α2 C2     Β2 Β1      Α1 C2 C1     
T17  (Technology) Β1 Α2      Β2 Β1      Α1       
T18  (Arts+Crafts)   C2 Β2 C2      Α1 C1    C2 C1 Β1    
T19    Α2    Α1             Β1 
T20  (English)      Β1 Α1     Α2 Β2 Β1     Α2 Β2 Α1 
T21  (Phys.Educ) 

(Phys.Educ) 

    Β1 Β2 Α2     Α1 Β1 Β2     Α1 Β1 Α2 
T22  (Phys.Educ) *** *** *** ***

* 

***

* 

***

* 

***

* 

***

* 

***

* 

***

* 

*** **** ***

* 

*** **** *** *** *** *** *** *** 
T23       C1       Α1      C2 Β2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     

DAYS THURSDAY FRIDAY 

TEACHERS 1
η
 2

η
 3

η
  4

η
  5

η
  6

η
  7

η
  1

η
 2

η
 3

η
  4

η
  5

η
  6

η
  7

η
  

T1 Β1 Α1          Β1 C2 C1 

T2    C1      C1 C1    

T3 Β2  Β2 Α2    Β2 Α1  Β2    

T4   C2 Α1 C1   Α1  C2     

T5     Α1 C2     Α1 C1   

T6 Α2 Α2       Α2 Β2 Α2    

T7    Β1 C2     Β1 Β1 C2   

T8  Β1 C1     Α2 Β1      

T9 Α1 Β2         C2 Β2   

T10 **** *** *** *** *** *** ***      Α2 Α2 

T11   Β1 C2 Β2   Β1 Β2      

T12     Β1 Α1 Α1     Α1 C1 C2 

T13   (French)     Α2 Β2 Β1      Α1 Β1 

T14   (French)      C1 C2 *** *** *** *** *** *** *** 

T15  (German)     Α2 Β2 C2 *** *** *** *** *** *** *** 

T16  (Computers)       C1     Α2 Β2 Α1 

T17  (Technology) **** *** *** *** *** *** ***     Α2 Β2 Α1 

T18  (Arts+Crafts)      Α2 C1 *** *** *** *** *** *** *** 

T19       Β2      Β1 Β2 

T20  (English) C1 C2 Α2     C2 C1 Α1     

T21  (Phys.Educ) 

(Phys.Educ) 

  Α1 Β2      Α2     

T22  (Phys.Educ) C2 C1      C1 C2      

T23      Β1 Α2 *** *** *** *** *** *** *** 
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teacher T1 teaches during the third shift for two successive periods. Since compactness 

for teachers is only a soft constraint, idle periods cannot be avoided completely; so 

teachers T6 and T4 carry one idle period each and teacher T3 carries two idle periods, 

marked with black boxes in the table. The stars on some teachers’ schedules, on the 

other hand, indicate that these teachers are working part-time for the school and are not 

available for these specific days.  

Moreover, in Table 6, one may observe the scheduling of courses with special 

requirements. For example, teacher T13, who is teaching French and teacher T15, who 

is teaching German, are both assigned section B2 on the 5
th

 period on Monday. In this 

way, the two teachers have been scheduled to teach simultaneously French and German 

to two different sub-sections of section B2. It is noted that the students of Hellenic 

gymnasiums are required to study a third language, which can be French or German, 

besides the mandatory Modern Greek and English; therefore, none of the students can 

be registered in both sub-sections. In addition, teachers T16 and T17, who teach the 

courses of Computers and Technology, respectively, teach simultaneously their courses 

by splitting one section (e.g. B1) into two sub-sections. During a given session, half of 

the class is scheduled for Computers and the other half for Technology, while during 

another session the two sub-sections interchange subjects. Moreover, teacher T16 

teaches a subsection of C2 simultaneously with teacher T18 who teaches Arts and 

Crafts to the other subsection of C2. Thus, T16 and T17 are scheduled for the first shift 

and T18 for the second, so that all simultaneously taught courses take effect. 

Lastly, the notion of parallel teaching is applied to teachers T20 and T21, who 

teach English and Physical Education, respectively. On Monday, during the 6
th

 period, 

sections B1 and B2 are assigned to those teachers. Students from both sections, who are 

in the “beginners” class of English form a new section and attend the class of teacher 

T20, while at the same time, the rest of the students have their Physical Education 

course. Similarly, on Tuesdays, again during the 6
th
 period these two sections are again 

scheduled to meet these two teachers. This time, however, the students who are in the 

“advanced” class of English attend the course of teacher T20 and the rest of the 

students the Physical Education course. Moreover, class B is required to have three 

time periods of Physical Education per week and only two of English; therefore, 

teacher T21 has to meet each one of the two sections (B1 and B2) for one time period 

in addition to those of teacher T20. This requirement is also covered effectively in the 

output of the TP model. 
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We conclude commenting on the results of this case study with the presentation 

of the EOTs that are formed for each day of the week (Table 7). Since there are six 

class-sections, exactly six EOTs are formed. The available teachers vary from 19 to 21 

for the different days of the week; therefore, most EOTs are formed with three teachers 

and only a few with four. From each pair of teachers that teach simultaneously, only 

one participates in the formation of an EOT and the other one is indicated next to its 

respective basic teacher separated with a slash (/). For example, on Monday the 

teachers 1, 13, and 23 form an EOT and split the day into three shifts, while teacher 15 

is also scheduled for the second shift to teach simultaneously with teacher 13. It is 

worth noting that while teachers 13, 7 and 19, for example, are all assigned to the 

second shift on Monday, the actual time periods that they teach do not necessarily 

coincide. From Table 6, the second shift for T13 points to periods {4, 5 and 6}, while 

for T7 to {3, 4} and for T19 to {4}. Lastly, the teachers that are forced to carry idle 

periods in their schedules appear in more than one EOT. For example, teacher 6 carries 

one idle time period on Monday and therefore appears in both EOT #5 and EOT #6. In 

Table 7 these teachers are indicated with underlined and bold values.  

Table 7. The EOTs for each day of the week as formed by the TP model 

A/A Monday Tuesday Wednesday Thursday Friday 

1 {1, 13/15, 23} {5, 2, 4} {5, 3, 1, 19} {1, 4, 23} {3, 4, 5, 13} 

2 {2, 4, 20} {6, 18, 1} {7, 6, 23} {3, 8, 2, 12} {8, 7, 10} 

3 {5, 7, 9} {8, 3, 10} {8, 4, 12} {6, 11, 14/15} {11, 2, 1} 

4 {8, 19, 21} {13, 11, 7, 23} {11, 9, 12} {9, 3, 5, 19} {20, 3, 12} 

5 {11, 12, 6, 14/15} {16/17, 12, 20} {13/15, 14/15, 20} {20, 7, 18/16} {22, 21, 9, 19} 

6 {17/16, 18/16, 3, 6,} {19, 9, 21} {17/16, 18/16, 21} {22, 21, 13/15} {4, 6, 16/17} 

Furthermore, the shift assignments that are indicated in Table 7 through the 

EOTs are not always the same with the shifts that the SAP had assigned to the teachers. 

This is the case because the TP model solves the problem as a whole; therefore, it is 

only guided but not constrained by the solution of the SAP model. Finally, from this 

table it is easy to detect the teachers that carry empty slots in their schedules. These 

teachers appear in two different EOTs in a given day, for example, T6 on Monday, T3 

on Thursday, etc. Effectively these teachers are assigned two shifts on those days and 
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this is again an intervention of the TP model that violates the “one-shift only” 

requirement in the SAP due to course scheduling requirements. 

4.1 Quantification of quality in timetables 

According to the results from the case study, our modelling approach has 

managed to effectively handle all hard and soft requirements set forth to us. However, 

measuring the degree of satisfaction for each specific soft constraint is a question that 

has not been answered yet. For this reason, our study proceeded further, towards the 

quantification of quality for the resulting timetables. The requirements that have been 

set forth to measure quality are the following: 

Q1: Core courses, if possible, should be scheduled during the early periods of each 

day, when students are more alert and their concentration more manageable. 

Q2: The preferences of the teachers for early, intermediate or late shift should be 

satisfied as much as possible. 

Q3: Given that the daily teaching requirements for the teachers do not cover the whole 

day, it is preferred that teachers’ schedules are as compact as possible, i.e. the total 

number of empty slots in teachers’ schedules should be minimal.  

These three quality requirements have been characterised as important to the 

school timetabling problem and have influenced indirectly the optimisation process. In 

order to further measure the satisfaction level, three quality indices are proposed: 

1.  Core-course Scheduling Satisfaction (CSS), to measure the percentage of core 

courses scheduled during early time periods (1
st
 to 4

th
). 

2.  Teachers Preference Satisfaction (TPS), to measure the percentage of assignments 

that match the teachers’ pre-defined preferences. 

3.  Teachers Schedule Compactness (TSC), to measure the percentage of the teaching 

periods assigned to teachers over the total number of time periods of presence 

effectively needed from the teachers (i.e. the sum of teaching periods and idle 

periods). 

As we have already discussed in section 3.0, quality requirements Q1 and Q2 

conflict with each other, if the corresponding teachers’ preferences for specific shifts do 

not go along with Q1. For this reason, constraint 3.2 in the SAP model has been added 

to set an upper limit to the satisfaction of teachers’ preferences, if this is necessary. To 
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test the performance of our timetabling approach according to the quality requirements, 

an additional extensive study has been carried out involving five different schools of 

varying sizes. Table 8 shows the size of the schools used for this study. The smallest 

(School #1) has 5 sections, 13 teachers (two of which are part-time) and a total of 170 

time periods to be assigned to courses. Respectively, the largest (School #5) has 21 

sections, 48 teachers (seven of which are part-time) and 721 time periods for 

scheduling. For Hellenic standards this is pretty much the range of school size in the 

country. For all schools, the timetabling approach presented in section 3.0 was applied 

and the corresponding SAP and TP models were built. The sizes of the TP  models are 

presented in Table 8 using {# of variables} and {# of constraints}.  

Table 8.  The size of schools and models used for experimentation 

School # of sections # of teachers # of time periods # of variables # of constraints 

1 5 13 (2 p-t) 170 2135 1190 

2 6 16 (5 p-t) 202 2380 1287 

3 9 21 (6 p-t) 306 3885 1958 

4 12 29 (6 p-t) 404 5089 2595 

5 21 48 (7 p-t) 721 10038 4754 

 

The quality of the resulting timetables depends on several factors; however it is 

definitely affected from courses with special scheduling requirements, from the 

school’s decision whether to apply a certain policy for core and non-core courses, as 

well as from the actual “balance” in the teachers’ preferences. In order to study the 

influence of the aforementioned factors along with the effectiveness of the proposed 

modelling approach for solving the timetabling problem, twelve different scenarios 

were run for each school. More specifically, we tested the following four combinations: 

1. Courses require only simple assignments and the school has no particular policy 

for the core courses, so it is left on teachers’ preferences whether to satisfy Q1.  

2. Courses require only simple assignments and the school postulates a certain 

policy for core courses, so teachers’ preferences are limited when necessary. 

3. There are courses that require special treatment in scheduling and the school has 

no particular policy for the core courses. 

4. There are courses that require special treatment in scheduling and the school 

postulates a certain policy for the core courses. 
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In conjunction with the above, three sets of preferences for the teachers were 

considered in order to study how the mix of teachers’ preferences influences the quality 

of the solution.  

1. Balanced preferences, i.e. half of the teachers prefer the first shift and the other 

half prefer the last shift. 

2. All teachers prefer the first shift 

3. All teachers prefer the last shift 

For the five schools in our study, 60 different experiments were totally run to 

study the influence of the “balance” in teachers’ preferences, the school policy for core 

courses, the special scheduling requirements, and the size of the school on the three 

quality indices described above, along with the ability of our approach to smooth out 

these factors and do the best for each case. The results from this effort are summarised 

in Figs. 5 - 7. Fig. 5 refers to the TPS index, Fig. 6 to the TSC and Fig. 7 to the CSS. For 

all figures, the horizontal axis refers to the school size, denoted by the number of class 

sections, while the vertical axes measure the corresponding index as a percentage.  

Figure 5 suggests that for the simpler case (only courses with simple scheduling 

requirements and no school policy for the core courses) the resulting timetables may 

reach the maximum 100% satisfaction of teachers’ preferences for the balanced case 

and 50% satisfaction for the unbalanced cases, when the school is large. For small 

schools, timetabling is easier but less flexible, thus the TPS index drops to 

approximately 85% and 45%, respectively. Requirements for special scheduling 

assignments for certain courses force the TPS index to drop significantly ranging from 

approximately 62% to 92% for the balanced preferences and from 35% to 50% for the 

unbalanced preferences. Again, we observe an upward trend of the satisfied teachers in 

relation to the school size, even though it may be influenced by other factors also. In 

addition to the special scheduling requirements, a school policy for the core courses 

may also reduce the achieved percentage of satisfied teachers. The size of the school 

turns to be a remedy in this case. However, when both courses with special scheduling 

requirements and school policy for the core courses co-exist, then the percentage of 

satisfaction is on the average around 70% and 45%, respectively for the different 

preference scenarios. In fact, we believe that an additional factor that plays significant 

role is the percentage of part-time teachers compared to those full-time. Since part-time 

teachers are highly constrained resources, high percentage of part-time teachers 
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degrades quality in terms of the TPS index. This is the case of school #2 (with 6 

classes-sections), which according to the results of Fig. 5 exhibits lower performance. 

 

 

Figure 5. The Teachers’ Preferences Satisfaction (TPS) Index. 

 

Similarly, Fig. 6 shows the influence of the different factors we examined on the 

compactness of the teachers schedules. This index is almost always higher than 95% 

and in most cases higher than 97%. In contrast to the TPS, the scheme of preferences 

does not influence the TSC in some obvious way. Moreover, TSC in most cases 

degrades with the size of the school. Apparently, for the small schools (5 and 6 

sections) and balanced preferences, our approach finds 100% compact timetables when 

only courses with simple assignments are required. Special scheduling requirements do 

introduce more idle periods in teacher schedules and this becomes worse as the size of 

the school increases. 
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Figure 6. The Teacher Schedule Compactness (TSC) Index 
 

 

 

 

 

 

 

 

 

 

 

Figure 7. The Core-course Scheduling Satisfaction (CSS) Index 

 

Finally, Fig. 7 shows the influence of the examined factors to the CSS Index. In 

fact, if we eliminate the Shift Assignment Problem and solve solely the Timetabling 

Problem taking into account only the core course precedence rule, then for the five 

schools we get the solid line (without shifts), which shows 100% satisfaction for all 
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cases. CSS degrades as the satisfaction of teachers’ preferences is introduced through 

the SAP, however the results show that with our approach approximately 90% of the 

core courses are still scheduled during the early 4 time-periods. More importantly, 

when special scheduling requirements are introduced for some courses and a school 

policy is additionally applied for the core courses, the figure shows that the CSS index 

is still very high (97% on the average). 

The last thing to report from our experimentation concerns the running times of 

our models. Since the SAP models are small compared to the TP models and run in all 

cases within some fraction of a second, the CPU times that we report below refer only 

to the TP models. Figure 8 gives the average CPU time, measured in seconds, for each 

one of the five schools that we examined. All models were solved on a PC with an Intel 

Core 2 Duo 2.67 GHz processor, 2GB Ram and Windows XP, using the ILOG CPLEX 

10.1 optimisation software. For each school the times from 12 models were averaged, 

while the smallest running time was 0.10 seconds and the largest 240 seconds.  
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Figure 8. The average CPU time as a function of the school size  

5.0 Summary and Conclusions 

 In this paper, we presented a novel two-stage approach for the school 

timetabling problem. The first stage consists of a Shift Assignment Problem, where 

work shifts are assigned to teachers based on their preferences, the school policy 

regarding core courses and the needs of the curriculum. The second stage consists of 

the actual Timetabling Problem resulting to an optimal timetable. In both stages Integer 
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Programming models are used for the solution of the corresponding problems. This 

approach has been applied to the Hellenic secondary educational system to achieve 

high-quality timetables which obey all functional and practical hard requirements and, 

to a very satisfactory level, a number of quality soft rules. More specifically, they are 

conflict free, complete, they can handle simultaneous, collaborative and parallel 

teaching requirements, they can schedule lectures of a given course to consecutive 

time-periods, they schedule courses in a balanced way across the week, and they are 

fully compact for the students. Still, they are also very compact for teachers; they 

satisfy teachers´ preferences at a high rate and at the same time force the core courses 

towards the beginning of each day.  

 In order to satisfy the compactness requirement of teachers as much as possible, 

the notion of work shift has been introduced. In addition, the notions of virtual class-

section and equivalent-of-a-teacher (EOT) help visualising the teachers’ schedules and 

indicate those subsets of teachers that share the daily teaching load for each virtual 

section. The shift assignments for the teachers are found with the solution of the SAP, 

where each teacher is assigned to one and only one shift per day. The timetabling 

problem is solved afterwards, and the shift assignments help us assign values for the 

cost coefficients in the objective function. With our approach, the values of the cost 

coefficients carry significant information that proves to be valuable to the timetabling 

procedure, which finally leads to an optimal solution that satisfies fully the hard 

constraints and to a high degree the soft constraints. 

 The approach has been applied to a large number of high schools with very 

satisfactory results. For experimental purposes, we chose five schools of different size. 

Several timetabling problems have been solved for these schools in order to study the 

impact of the size of the school, the mix of the preferences of the teachers, the school 

policy about the core courses and the requirements for simultaneous, collaborative or 

parallel teaching for certain courses on the quality of the resulting timetables. To make 

our observations measurable we establish three quality indices: the teachers´ 

preferences satisfaction index, an index that measures the compactness of the teachers´ 

schedules and finally the percentage of core courses that are scheduled during the early 

time periods. Our conclusions from this study are summarised as follows: 

 If the courses in the timetable carry only simple requirements and there is no school 

policy for core courses then the indices that measure teachers´ preferences 

satisfaction and teachers´ schedules compactness are both very high when the 



 36 

teachers` preferences are balanced. In the opposite case, i.e. when teachers` 

preferences are totally unbalanced, the first index drops to approximately 50%, as 

expected, but the later remains above 95%.  

 When special scheduling requirements are required from certain courses and a strict 

school policy is applied to limit the teachers’ preferences, then we have worst-case 

scenarios for both indices. The teachers´ preference satisfaction index drops to 

approximately 70% (when the preferences are balanced) and to 45% (when the 

preferences are totally unbalanced). Similarly, the index that measures compactness 

drops slightly, but still remains almost always above 97%. 

 On the contrary, the index that measures the percentage of core courses that are 

scheduled during the early time periods is very high (approximately 95%) when 

special scheduling requirements do exist and a school policy for core courses is 

applied. 

 The size of the school influences positively the satisfaction of the teachers´ 

preferences and negatively their schedules compactness. However, it does not seem 

to affect the index for the core courses. 
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